Inertio-elastic focusing of bioparticles in microchannels at high throughput.

نویسندگان

  • Eugene J Lim
  • Thomas J Ober
  • Jon F Edd
  • Salil P Desai
  • Douglas Neal
  • Ki Wan Bong
  • Patrick S Doyle
  • Gareth H McKinley
  • Mehmet Toner
چکیده

Controlled manipulation of particles from very large volumes of fluid at high throughput is critical for many biomedical, environmental and industrial applications. One promising approach is to use microfluidic technologies that rely on fluid inertia or elasticity to drive lateral migration of particles to stable equilibrium positions in a microchannel. Here, we report on a hydrodynamic approach that enables deterministic focusing of beads, mammalian cells and anisotropic hydrogel particles in a microchannel at extremely high flow rates. We show that on addition of micromolar concentrations of hyaluronic acid, the resulting fluid viscoelasticity can be used to control the focal position of particles at Reynolds numbers up to Re≈10,000 with corresponding flow rates and particle velocities up to 50 ml min(-1) and 130 m s(-1). This study explores a previously unattained regime of inertio-elastic fluid flow and demonstrates bioparticle focusing at flow rates that are the highest yet achieved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inertio-elastic focusing of bioparticles in a microchannel at ultra-high throughput

Many biological and industrial fluids are filled with micro-scale particles that can serve as "state markers" for real-world issues, such as human health and public infrastructure. In order to extract this valuable information from such fluids, the controlled manipulation of particles is often necessary. Microfluidic technologies based on viscosity-dominant flows have achieved this essential st...

متن کامل

Probing nonlinear rheology with inertio-elastic oscillations

any common materials display significant nonlinear rheological properties. Characterizing these roperties can be done with a variety of methods. One such method uses inertio-elastic oscillations, hich occur naturally in rotational rheometry as a consequence of a material’s elasticity and the nertia of the rheometer. These oscillations have primarily been used to characterize linear iscoelastic ...

متن کامل

Dean Flow-coupled Inertial Focusing for Ultra-high-throughput Particle Filtration

Particle manipulation represents an important and fundamental step prior to counting, sorting and detecting bioparticles. In this study, we report dean-coupled inertial focusing of particles in flows through a single curve microchannel at extremely high channel Reynold numbers (~325). We found the lateral particle focusing position, xf to be fixed and largely independent of radius of curvature ...

متن کامل

Inertio-elastic instability of non shear-banding wormlike micelles.

Homogeneous polymer solutions are well known to exhibit viscoelastic flow instabilities: purely elastic when inertia is negligible and inertio-elastic otherwise. Recently, shear-banding wormlike micelle solutions were also discovered to follow a similar phenomenology. In the shear-banding regime, inertia is usually negligible so only purely elastic flows have been reported. Here, we investigate...

متن کامل

High pressure inertial focusing for separation and concentration of bacteria at high throughput

Inertial focusing is a phenomenon where particles migrate across streamlines in microchannels and focus at well-defined, size dependent equilibrium points of the cross section. It can be taken into advantage for focusing, separation and concentration of particles at high through-put and high efficiency. As particles decrease in size, smaller channels and higher pressures are needed. Hence, new ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014